Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37834536

RESUMO

Synthetic calcium phosphates, e.g., hydroxyapatite (HAP) and tricalcium phosphate (TCP), are the most commonly used bone-graft materials due to their high chemical similarity to the natural hydroxyapatite-the inorganic component of bones. Calcium in the form of a free ion or bound complexes plays a key role in many biological functions, including bone regeneration. This paper explores the possibility of increasing the Ca2+-ion release from HAP nanoparticles (NPs) by reducing their size. Hydroxyapatite nanoparticles were obtained through microwave hydrothermal synthesis. Particles with a specific surface area ranging from 51 m2/g to 240 m2/g and with sizes of 39, 29, 19, 11, 10, and 9 nm were used in the experiment. The structure of the nanomaterial was also studied by means of helium pycnometry, X-ray diffraction (XRD), and transmission-electron microscopy (TEM). The calcium-ion release into phosphate-buffered saline (PBS) was studied. The highest release of Ca2+ ions, i.e., 18 mg/L, was observed in HAP with a specific surface area 240 m2/g and an average nanoparticle size of 9 nm. A significant increase in Ca2+-ion release was also observed with specific surface areas of 183 m2/g and above, and with nanoparticle sizes of 11 nm and below. No substantial size dependence was observed for the larger particle sizes.

2.
Pharmaceutics ; 14(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36559264

RESUMO

Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.

3.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744300

RESUMO

The paper describes composites with the matrix containing a nanocrystalline intermetallic Al13Fe4 phase and microcrystalline aluminium. Mechanically alloyed Al80Fe20 powder, containing a metastable nanocrystalline Al5Fe2 phase, was mixed with 20, 30, and 40 vol.% of Al powder and consolidated at 750 °C under the pressure of 7.7 GPa. During the consolidation, the metastable Al5Fe2 phase transformed into a nanocrystalline Al13Fe4 phase. In the bulk samples, Al13Fe4 areas were wrapped around by networking Al regions. The hardness of the Al13Fe4-Al composites was in the range of 4.52-5.50 GPa. The compressive strength of the Al13Fe4-30%Al and Al13Fe4-40%Al composites was 805 and 812 MPa, respectively, and it was considerably higher than that of the Al13Fe4-20%Al composite (538 MPa), which failed in the elastic region. The Al13Fe4-30%Al and Al13Fe4-40%Al composites, in contrast, showed some plasticity: namely, 1.5% and 9.1%, respectively. The density of the produced composites is in the range of 3.27-3.48 g/cm3 and decreases with the increase in the Al content.

4.
Drug Deliv ; 28(1): 1478-1495, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34254539

RESUMO

Plant-derived natural medicines have been extensively studied for anti-inflammatory or antioxidant properties, but challenges to their clinical use include low bioavailability, poor solubility in water, and difficult-to-control release kinetics. Nanomedicine may offer innovative solutions that can enhance the therapeutic activity and control release kinetics of these agents, opening the way to translating them into the clinic. Two agents of particular interest are rutin (Ru), a flavonoid, and piperine (Pip), an alkaloid, which exhibit a range of pharmacological activities that include antioxidant and anti-inflammatory effects. In this work, nanoformulations were developed consisting of two metal-organic frameworks (MOFs) with surface modifications, Ti-MOF and Zr-MOF, each of them loaded with Ru and/or Pip. Both MOFs and nanoformulations were characterized and evaluated in vivo for anti-inflammatory and antioxidant effects. Loadings of ∼17 wt.% for a single pro-drug and ∼27 wt.% for dual loading were achieved. The release patterns for Ru and or Pip followed two stages: a zero-order for the first 12-hour stage, and a second stage of stable sustained release. At pH 7.4, the release patterns best fit to zero-order and Korsmeyer-Peppas kinetic models. The nanoformulations had enhanced anti-inflammatory and antioxidant effects than any of their elements singly, and those with Ru or Pip alone showed stronger effects than those with both agents. Results of assays using a paw edema model, leukocyte migration, and plasma antioxidant capacity were in agreement. Our preliminary findings indicate that nanoformulations with these agents exert better anti-inflammatory and antioxidant effects than the agents in their free form.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Benzodioxóis/farmacologia , Estruturas Metalorgânicas/química , Nanopartículas/química , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Rutina/farmacologia , Alcaloides/administração & dosagem , Alcaloides/farmacocinética , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacocinética , Química Farmacêutica , Preparações de Ação Retardada , Portadores de Fármacos , Combinação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Masculino , Piperidinas/administração & dosagem , Piperidinas/farmacocinética , Alcamidas Poli-Insaturadas/administração & dosagem , Alcamidas Poli-Insaturadas/farmacocinética , Ratos , Ratos Wistar , Rutina/administração & dosagem , Rutina/farmacocinética
5.
Materials (Basel) ; 14(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300712

RESUMO

Presented is a study on the preparation, via original precursor solution chemistry, of intimately mixed composite nanocrystalline powders in the system gallium nitride GaN-titanium nitride TiN, atomic ratio Ga/Ti = 1/1, which were subjected to high-pressure (7.7 GPa) and high-temperature (650, 1000, and 1200 °C) sintering with no additives. Potential equilibration toward bimetallic compounds upon mixing of the solutions of the metal dimethylamide precursors, dimeric {Ga[N(CH3)2]3}2 and monomeric Ti[N(CH3)2]4, was studied with 1H- and 13C{H}-NMR spectroscopy in C6D6 solution. The different nitridation temperatures of 800 and 950 °C afforded a pool of in situ synthesis-mixed composite nanopowders of hexagonal h-GaN and cubic c-TiN with varying average crystallite sizes. The applied sintering temperatures were either to prevent temperature-induced recrystallization (650 °C) or promote crystal growth (1000 and 1200 °C) of the initial powders with the high sintering pressure of 7.7 GPa having a detrimental effect on crystal growth. The powders and nanoceramics, both of the composites and of the individual nitrides, were characterized if applicable by powder XRD, SEM/EDX, Raman spectroscopy, Vicker's hardness, and helium density. No evidence was found for metastable alloying of the two crystallographically different nitrides under the applied synthesis and sintering conditions, while the nitride domain segregation on the micrometer scale was observed on sintering. The Vicker's hardness tests for many of the composite and individual nanoceramics provided values with high hardness comparable with those of the individual h-GaN and c-TiN ceramics.

6.
Phys Chem Chem Phys ; 23(18): 11075-11081, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33942829

RESUMO

The dependency of the surface free energy (SFE) of diamond nanocrystals on particle size was studied by means of molecular dynamics (MD) and DFT simulations. It was demonstrated how to avoid the ambiguities in calculating the surface area of very small crystallites by expressing the particle size in terms of the number of atoms which we called the number of atoms convention (NAC) rather than in units of length. The NAC method was applied to a set of models terminated with either (100) or (111) crystal faces. The MD simulations were done for two widely used potentials, i.e. Tersoff and AIREBO. Both potentials show appreciable changes in surface free energy with decreasing crystal size but in opposite directions. In the limit of an infinite crystal both tested potentials give the energy of the (100) surface to be more than two times higher than that of the (111) surface. Also the absolute figures calculated from the AIREBO potential are twice larger than those from the Tersoff potential. DFT simulations of the selected small particles confirmed the MD calculations based on the AIREBO results for the (111) surface but for the (100) surface the values were considerably smaller.

7.
J Phys Condens Matter ; 33(17)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33533336

RESUMO

Atomic structure of plate-shaped nanodiamonds synthesized from chloroadamantane was identified with application of large-Qpowder diffraction data. Both reciprocal and real space methods of experimental data analysis were applied. Theoretical atomistic models of nanodiamonds were obtained with application of molecular dynamics (MD) simulations. It was found that examined nanodiamond samples with average grain size from 1.2 up to 2.5 nm are plates build from only six hexagonal carbon layers and they are terminated by (111)B surfaces with three dangling bonds. MD simulations showed that as a result of relaxation of surface stresses there appears a complex system of compressive and tensile strains across and parallel to the surface of the plate-nanodiamonds. Identification of the internal structure of nanodiamond was performed based on the analysis of differential interatomic distance diagrams derived from pair distribution functionsG(r). Based on MD simulations an atomic model of plate-grains of diamond was elaborated. Usefulness of lattice parameters determined in a routine diffraction data analysis for characterization of nanodiamonds is questioned. As an alternative the application of the apparent lattice parameter is recommended. A dependence of the overall apparent lattice parameter 〈alp〉 on the size and shape of nanodiamond grains terminated by low index crystal faces is presented.

8.
Materials (Basel) ; 14(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513821

RESUMO

Presented is a study on the original preparation of individual and in situ intimately mixed composite nanocrystalline powders in the titanium nitride-aluminum nitride system, Ti:Al = 1:1 (at.), which were used in high pressure (7.7 GPa) and high temperature (650 and 1200 °C) sintering with no binding additives for diverse individual and composite nanoceramics. First, variations in precursor processing pathways and final nitridation temperatures, 800 and 1100 °C, afforded a pool of mixed in the nanosized regime cubic TiN (c-TiN) and hexagonal AlN (h-AlN) composite nanopowders both with varying average crystallite sizes. Second, the sintering temperatures were selected either to preserve initial powder nanocrystallinity (650 °C was lower than both nitridation temperatures) or promote crystal growth and recrystallization (1200 °C was higher than both nitridation temperatures). Potential equilibration towards bimetallic compounds upon solution mixing of the organometallic precursors to nanopowders, monomeric Ti[N(CH3)2]4 and dimeric {Al[N(CH3)2]3}2, was studied with 1H and 13C NMR in C6D6 solution. The powders and nanoceramics, both of the composites and individual nitrides, were characterized if applicable by powder XRD, FT-IR, SEM/EDX, Vicker's hardness, and helium density. The Vicker's hardness tests confirmed many of the composite and individual nanoceramics having high hardnesses comparable with those of the reference h-AlN and c-TiN ceramics. This is despite extended phase segregation and, frequently, closed microsized pore formation linked mainly to the AlN component. No evidence was found for metastable alloying of the two crystallographically different nitrides under the applied synthesis and sintering conditions. The high pressure and high temperature sintering of the individual and in situ synthesis-mixed composite nanopowders of TiN-AlN was demonstrated to yield robust nanoceramics.

9.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957616

RESUMO

Molybdenum disulfide (MoS2) can be an excellent candidate for being combined with carbon nanomaterials to obtain new hybrid nanostructures with outstanding properties, including higher catalytic activity. The aim of the conducted research was to develop the novel production method of hybrid nanostructures formed from MoS2 and graphene oxide (GO). The nanostructures were synthesized in different weight ratios and in two types of reactors (i.e., impinging jet and semi-batch reactors). Physicochemical analysis of the obtained materials was carried out, using various analytical techniques: particle size distribution (PSD), thermogravimetric analysis (TGA), FT-IR spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Due to the potential application of materials based on MoS2 as the catalyst for hydrogen evolution reaction, linear sweep voltammetry (LSV) of the commercial MoS2, synthesized MoS2 and the obtained hybrid nanostructures was performed using a three-electrode system. The results show that the developed synthesis of hybrid MoS2/GO nanostructures in continuous reactors is a novel and facile method for obtaining products with desired properties. The hybrid nanostructures have shown better electrochemical properties and higher onset potentials compared to MoS2 nanoparticles. The results indicate that the addition of carbon nanomaterials during the synthesis improves the activity and stability of the MoS2 nanoparticles.

10.
Int J Nanomedicine ; 15: 5181-5202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801685

RESUMO

BACKGROUND: Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses. MATERIALS AND METHODS: In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explored as a novel antiviral nanoformulations targeting the highly pathogenic avian influenza H5N1 virus. Also, the immunomodulatory effects were investigated in vitro tests and anti-inflammatory activity was determined in vivo using the acute carrageenan-induced paw edema rat model. RESULTS: Prodrugs alone or the MSNs displayed weaker antiviral effects as evidenced by virus titers and plaque formation compared to nanoformulations. The MSNs-NH2-SH and MSNs-NH2-SH-QR2 nanoformulations displayed a strong virucidal by inactivating the H5N1 virus. They induced also strong immunomodulatory effects: they inhibited cytokines (TNF-α, IL-1ß) and nitric oxide production by approximately 50% for MSNs-NH2-SH-QR2 (containing both SH and QR). Remarkable anti-inflammatory effects were observed during in vivo tests in an acute carrageenan-induced rat model. CONCLUSION: Our preliminary findings show the potential of nanotechnology for the application of natural prodrug substances to produce a novel safe, effective, and affordable antiviral drug.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Nanopartículas/química , Pró-Fármacos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/imunologia , Antivirais/imunologia , Citocinas/metabolismo , Cães , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Edema/tratamento farmacológico , Edema/metabolismo , Fatores Imunológicos/imunologia , Fatores Imunológicos/farmacologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Quercetina/imunologia , Quercetina/farmacologia , Ratos , Ácido Chiquímico/imunologia , Ácido Chiquímico/farmacologia , Dióxido de Silício/química
11.
Pharmaceutics ; 12(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963155

RESUMO

Targeted drug delivery offers great opportunities for treating cancer. Here, we developed a novel anticancer targeted delivery system for piperine (Pip), an alkaloid prodrug derived from black pepper that exhibits anticancer effects. The tailored delivery system comprises aggregated hydroxyapatite nanoparticles (HAPs) functionalized with phosphonate groups (HAP-Ps). Pip was loaded into HAPs and HAP-Ps at pH 7.2 and 9.3 to obtain nanoformulations. The nanoformulations were characterized using several techniques and the release kinetics and anticancer effects investigated in vitro. The Pip loading capacity was >20%. Prolonged release was observed with kinetics dependent on pH, surface modification, and coating. The nanoformulations fully inhibited monolayer HCT116 colon cancer cells compared to Caco2 colon cancer and MCF7 breast cancer cells after 72 h, whereas free Pip had a weaker effect. The nanoformulations inhibited ~60% in HCT116 spheroids compared to free Pip. The Pip-loaded nanoparticles were also coated with gum Arabic and functionalized with folic acid as a targeting ligand. These functionalized nanoformulations had the lowest cytotoxicity towards normal WI-38 fibroblast cells. These preliminary findings suggest that the targeted delivery system comprising HAP aggregates loaded with Pip, coated with gum Arabic, and functionalized with folic acid are a potentially efficient agent against colon cancer.

12.
Cancers (Basel) ; 12(1)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936103

RESUMO

Antimitotics are important anticancer agents and include the natural alkaloid prodrug colchicine (COL). However, a major challenge of using COL as an anticancer drug is its cytotoxicity. We developed a novel drug delivery system (DDS) for COL using mesoporous silica nanoparticles (MSNs). The MSNs were functionalized with phosphonate groups, loaded with COL, and coated with folic acid chitosan-glycine complex. The resulting nanoformulation, called MSNsPCOL/CG-FA, was tested for action against cancer and normal cell lines. The anticancer effect was highly enhanced for MSNsPCOL/CG-FA compared to COL. In the case of HCT116 cells, 100% inhibition was achieved. The efficiency of MSNsPCOL/CG-FA ranked in this order: HCT116 (colon cancer) > HepG2 (liver cancer) > PC3 (prostate cancer). MSNsPCOL/CG-FA exhibited low cytotoxicity (4%) compared to COL (~60%) in BJ1 normal cells. The mechanism of action was studied in detail for HCT116 cells and found to be primarily intrinsic apoptosis caused by an enhanced antimitotic effect. Furthermore, a contribution of genetic regulation (metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1), and microRNA (mir-205)) and immunotherapy effects (angiopoietin-2 (Ang-2 protein) and programmed cell death protein 1 (PD-1) was found. Therefore, this study shows enhanced anticancer effects and reduced cytotoxicity of COL with targeted delivery compared to free COL and is a novel method of developing cancer immunotherapy using a low-cost small-molecule natural prodrug.

13.
Nanomaterials (Basel) ; 9(7)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336907

RESUMO

Handling and properties of nanoparticles strongly depend on processes that take place on their surface. Specific surface area and adsorption capacity strongly increase as the nanoparticle size decreases. A crucial factor is adsorption of water from ambient atmosphere. Considering the ever-growing number of hydroxyapatite nanoparticles applications, we decided to investigate how the size of nanoparticles and the changes in relative air humidity affect adsorption of water on their surface. Hydroxyapatite nanoparticles of two sizes: 10 and 40 nm, were tested. It was found that the nanoparticle size has a strong effect on the kinetics and efficiency of water adsorption. For the same value of water activity, the quantity of water adsorbed on the surface of 10 nm nano-hydroxyapatite was five times greater than that adsorbed on the 40 nm. Based on the adsorption isotherm fitting method, it was found that a multilayer physical adsorption mechanism was active. The number of adsorbed water layers at constant humidity strongly depends on particles size and reaches even 23 layers for the 10 nm particles. The amount of water adsorbed on these particles was surprisingly high, comparable to the amount of water absorbed by the commonly used moisture-sorbent silica gel.

14.
J Phys Condens Matter ; 30(34): 345901, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30020081

RESUMO

A new methodology of performing structural analysis of nanocrystals based on wide angle powder diffraction is proposed. It combines molecular dynamics simulations with the analysis of pair distribution function. The actual analysis was performed on CdSe quantum dots. MD simulations of nanocrystals with shapes defined by low-index atomic planes, (1 0 0), (1 1 0), and (1 1 1) introduced bulk and surface relaxation in initially perfect crystal lattice. In search for the best atomistic model of the actual CdSe nanocrystals, experimental structure functions S(Q) and interatomic distance functions G(r) were matched to those calculated with MD models. Eventually it was concluded that CdSe nanocrystals with dimensions of 2.5-3.5 nm assume the shape of octahedrons terminated by (1 1 1) surfaces.

15.
Oncotarget ; 9(41): 26466-26490, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29899871

RESUMO

Naturally derived prodrugs have a wide range of pharmacological activities, including anticancer, antioxidant, and antiviral effects. However, significant barriers inhibit their use in medicine, e.g. their hydrophobicity. In this comprehensive study, we investigated simple and effective nanoformulations consisting of amine-functionalized and conjugated with folic acid (FA) mesoporous silica nanoparticles (MSNs). Two types of MSNs were studied: KCC- 1, with mean size 324 nm and mean pore diameter 3.4 nm, and MCM - 41, with mean size 197 and pore diameter 2 nm. Both types of MSNs were loaded with three anticancer prodrugs: curcumin, quercetin, and colchicine. The nanoformulations were tested to target in vitro human hepatocellular carcinoma cells (HepG2) and HeLa cancer cells. The amine-functionalized and FA-conjugated curcumin-loaded, especially KCC-1 MSNs penetrated all cells organs and steadily released curcumin. The FA-conjugated MSNs displayed higher cellular uptake, sustained intracellular release, and cytotoxicity effects in comparison to non-conjugated MSNs. The KCC-1 type MSNs carrying curcumin displayed the highest anticancer activity. Apoptosis was induced through specific signaling molecular pathways (caspase-3, H2O2, c-MET, and MCL-1). The nanoformulations displayed also an enhanced antioxidant activity compared to the pure forms of the prodrugs, and the effect depended on the time of release, type of MSN, prodrug, and assay used. FA-conjugated MSNs carrying curcumin and other safe natural prodrugs offer new possibilities for targeted cancer therapy.

16.
Nanomaterials (Basel) ; 8(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783651

RESUMO

This paper reports the possibility of changing the size of zinc oxide nanoparticles (ZnO NPs) aggregates through a change of synthesis parameters. The effect of the changed power of microwave heating on the properties of ZnO NPs obtained by the microwave solvothermal synthesis from zinc acetate dissolved in ethylene glycol was tested for the first time. It was found that the size of ZnO aggregates ranged from 60 to 120 nm depending on the power of microwave radiation used in the synthesis of ZnO NPs. The increase in the microwave radiation power resulted in the reduction of the total synthesis time with simultaneous preservation of the constant size and shape of single ZnO NPs, which were synthesized at a pressure of 4 bar. All the obtained ZnO NPs samples were composed of homogeneous spherical particles that were single crystals with an average size of 27 ± 3 nm with a developed specific surface area of 40 m²/g and the skeleton density of 5.18 ± 0.03 g/cm³. A model of a mechanism explaining the correlation between the size of aggregates and the power of microwaves was proposed. This method of controlling the average size of ZnO NPs aggregates is presented for the first time and similar investigations are not found in the literature.

17.
Nanotechnology ; 29(6): 065601, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29231173

RESUMO

The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn5(OH)8(CH3COO)2 · xH2O. Esters and H2O were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.

18.
Beilstein J Nanotechnol ; 7: 1586-1601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144510

RESUMO

Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

19.
Beilstein J Nanotechnol ; 6: 1957-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665067

RESUMO

Zinc oxide nanopowders doped with 1-15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS) technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999%) and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD), helium pycnometry density, specific surface area (SSA), inductively coupled plasma optical emission spectrometry (ICP-OES), extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and with magnetometry using superconducting quantum interference device (SQUID). Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 µm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co-Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.

20.
J Phys Condens Matter ; 26(2): 025401, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24305496

RESUMO

Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...